

Generative Artificial Intelligence in Enterprise Information Systems: Transforming Business Intelligence and Strategic Decision Support Processes

Shariful Haque¹, Hasibul Islam², Farmina Sharmin³, Md Shakirul Islam Joy⁴, Kamron Naher⁵, Nur Nahar Rimi⁶, Farhin Shimu⁷

¹Department of Business Administration, International American University, 3440 Wilshire Blvd, Los Angeles, CA 90010, USA. Email: research@sharifulhaque.org, ORCID ID: 0009-0003-0832-5539

²Master of Business Administration in Business Analytics, International American University, 3440 Wilshire Blvd STE 1000, Los Angeles, CA 90010, USA Email: shantoh374@gmail.com, ORCID ID: 0000-0002-1849-9554

³Master of Business Administration (MBA) — Business Analytics, International American University, 3440 Wilshire Blvd, Los Angeles, CA 90010, USA. Email: farminsharmin567@gmail.com, ORCID ID: 0009-0006-4410-2668

⁴College of Business, Westcliff University, 17877 Von Karman Ave, 4th Floor, Irvine, CA 92614, USA. Email: m.islam.9094@westcliff.edu, ORCID ID: 0009-0004-9835-6765

⁵MBA in Project Management, Central Michigan University, 1200 S Franklin St, Mt Pleasant, MI 48859, USA. Email: naher1k@cmich.edu, ORCID ID: 0009-0009-5086-8856

⁶College of Technology & Engineering, Westcliff University, 17877 Von Karman Ave, Irvine, CA 92614, USA. Email: n.rimi.253@westcliff.edu, ORCID ID: 0009-0002-8130-5721

⁷Department of Communication and Multimedia Studies, Florida Atlantic University, 777 Glades Rd, Boca Raton, FL 33431, USA. Email: fshimu2023@fau.edu, ORCID ID: 0009-0002-9590-547X

Abstract

Background: General artificial intelligence (GenAI) is a paradigm shift of deterministic computing to introduction of reasoning based decision support in Enterprise Information Systems (EIS). This change in the United States can be characterized by rapidly moving experimental pilots to the mainstream business processes of having autonomous and agentic functions implemented in the business environment in the financial planning, supply chain management, and procurement. With a high of 33.9 billion in international investments in GenAI in 2024, it has now become more than a productivity tool with the executive leadership.

Research Objective: This systematic review serves the goal of thoroughly examining how and the effects of generative artificial intelligence (GenAI) on enterprise information systems (EIS) in the United States.

Research Methods: The major academic and industry databases were searched and focused on the research published within the period of 2020-2025. The quality of methods and the risk of bias were identified using the approved critic appraisal instruments, that is, AMSTAR-2 and JBI checklists. The performance quantitative measurements that were incorporated in the review are technical frameworks, such as the Gen-Optimizer, and qualitative data.

Conclusion: Despite the fact that the productivity enhancement of high-performing organizations is up by as much as 40 percent and cost reduction up by 95 percent when agentic orchestration happens, the failure rate of initial enterprise AI initiatives, standing at 95 percent, reveals that few success stories exist, and there is no ability to correct the underlying problem, namely, the data quality and infrastructure bottlenecks.

Keywords: Generative AI, Enterprise Information Systems, Business Intelligence, Decision Support, Strategic Decision Support, Data Security.

Generative Artificial Intelligence

The construction of an architectural metamorphosis of Enterprise Information Systems (EIS) in the United States is at a critical inflection point by 2025 due to the ubiquitous integration of generative artificial intelligence (GenAI). This change signifies the breakout of classical deterministic computing to probabilistic and reasoning based models that redefine the definition of business intelligence and strategic decision support. [3] [27] In the American business sector, this change is measured by a historical rate in the rapid capital expenditure, with investments of generative technologies all over the globe totaling 33.9 billion dollars in 2024, a growth of 18.7 percent compared to the previous year. [8] With organizations no longer doing pilot projects and the emphasis instead shifted on integrating agentic capabilities into the workflows of the enterprises, in specific areas (financial planning, supply chain management, and customer relationship management), in particular. This story examines the processes by which generative artificial intelligence is changing the enterprise landscape, the system-wide obstacles to its implementation, and the changing regulatory framework that regulates its application in the United States. [4]

Enterprise Intelligence Development.

The application of generative artificial intelligence to enterprise systems is deeply entrenched in the capacity of computer systems to generate novel data or formulate complicated forecasts on the basis of previously educated patterns as opposed to recalling information stored in storage. In the past, business intelligence was defined in terms of descriptive and diagnostic analytics, which aimed at describing what took place and why it took place. [7], [12] Nonetheless, the modern age of decision intelligence applies the Large Language Models (LLMs) along with transformer architectures to deliver advice and forecasts, which were formerly unavailable to non-technical audiences. This development can be described by the shift towards artificial intelligence as a strategic thinking companion of the executive leadership. By 2025, 78 percent of organizations in the United States will have incorporated artificial intelligence into at least one of their business functions, as opposed to 55 percent a single year prior. [13] The growth is not just a quantitative expansion in the use of software but a qualitative change in the way business logic is running. This is because it is capable of an analysis depth in areas where a human being is incapable of doing such, especially in uncovering latent correlations in large datasets.

Enterprise AI Research evaluation

Researchers will have to use rigorous critical appraisal tools to cooperate with the validity of the insights obtained based on the proliferating body of knowledge about generative artificial intelligence. [28] To conduct a systematic review in this field, the AMSTAR-2 (A Critical Appraisal Tool of Systematic Reviews) and the JBI (Joannabriggs Institute) checklists are regularly applied to assess the quality of the methodological aspects of the studies. These instruments are necessary to separate high-quality evidence among the healthcare information that is flooded with promotional and experimental reporting that is the hallmark of the current technological hype cycle. [14], [5]

An example is the AMSTAR-2 framework that comprises 16 items that aim to evaluate risk of bias and methodological conduct. The major areas of the framework are the direct application of the PICO (Population, Intervention, Comparator, Outcome) framework, registration of research protocols before the start of the study, and the comprehensive research of publication bias. [7], [4] These appraisal tools enable practitioners in the field of enterprise information systems to assess whether or not a given generative framework like the Gen-Optimizer in the case of cost optimization based on sound experimental design, or is simply anecdotal. The implementation of these high standards is especially critical as the generative artificial intelligence will find itself in the "Trough of Disillusionment" of the 2025 Gartner Hype Cycle. In this stage, organizations start to get beyond the first novelty and challenge the technical and operational constraints of the technology which require an increased evidence based approach to implementation. [12], [3]

Strategic DSS processes

It is a fact that strategic decision-making is complex, ambiguous, and high-stakes at the entrepreneurial and corporate levels. [28] Generative artificial intelligence is one solution to these problems because it simulates the future and provides valuable solutions that incorporate market external factors with internal data on operations. [8], [14] Corporations such as Google and Amazon in the US have used the decentralized organization with real-time data analytics to create a state of strategic agility, which enables them to alter strategies in real time, in response to consumer disruptions. The most notable decision support development in 2025 is the development of the so-called Agentic AI. Contrary to typical automated systems where the logic is linear and based on the rule of thumb: if then, agentic systems can reason, plan and implement multi-step workflow on their own. E.g., a financial planning agent might be able to examine market fluctuations on their own, compare the latter with the internal cash flow estimates, and suggest certain resource reassessments to the C-suite. This change decreases the magnitude of the pendulum swings in the prediction as a result of human emotion and bias resulting in more stable and true predictions in the long run. [7], [13] Enterprise Information System (EIS) is the foundation of the contemporary organization, which combines various areas of data, business processes, and technology to make informed decision-making and be efficient and effective in their operations. [12], [13] Conventionally, EIS have played a role in transactional data consolidation and making an organized insight to aid the managers. Nevertheless, the emergence of generative artificial intelligence (GenAI) represents a paradigm shift in this field and opens the possibilities of going beyond the traditional data processing and analysis. [15] Generative artificial intelligence (AI) technologies in the form of advanced large language models (LLM), generative design algorithms, and AI-based analytics are transforming the business intelligence (BI) and strategic decision support in companies. Such technologies allow automatic creation of insights, narratives and predictive scenarios through synthesis of extensive datasets of formatted and unstructured data. [16] This change gives the organizations the ability to transition to responsive reporting to responsive and adaptive decision models that can be responsive to market trends and operations pressures.

Need of Study

The impressive growth of GenAI among enterprise users in the United States results from advances in technology, competition between companies and an increasingly urgent demand for quick and intelligent decisions based on data. A variety of industries, including finance, healthcare, retail and manufacturing, are using GenAI to improve their Business Intelligence (BI) Processes, improve efficiency and create a culture of

innovation. However, while these applications for GenAI hold promise, many important issues arise with implementing GenAI in Business Intelligence Enterprise Systems (BI EIS), including ethical considerations, proper governance (along with policies that support privacy and security) and ensuring that employees are prepared to work with them. This systematic review will systematically evaluate the use of GenAI in Business Intelligence Enterprise Systems within the U.S. By analyzing how the use of GenAI is changing how BI supports strategic decision making (including logistical support), it will identify key challenges and highlight potential research opportunities and opportunities for implementation in practice going forward.

Study Objective

This systematic review serves the goal of thoroughly examining how and the effects of generative artificial intelligence (GenAI) on enterprise information systems (EIS) in the United States. This review examines and compiles all academia and industry data regarding the use of GenAI technologies and their use within Enterprise Information Systems.

Research Methodology

Research Question

The main research questions are as follows:

- Q1. What is the state of Generative AI today in terms of Enterprise Information Systems in the United States?
- Q2. In what ways does Generative AI affect Enterprise's Business Intelligence and Decision-Making Support Functions?
- Q3. What will be the major challenges and ethical considerations to consider when using Generative AI in an Enterprise Information System?

Research Design

The present systematic review has a rigorous research design, as it entails an extensive analysis of the applications and implications of generative artificial intelligence (GenAI) in enterprise information systems (EIS) in the United States. The paper is conducted using the accepted systematic review methods that involve a well-specified search plan, inclusion and exclusion criteria and systematic data extraction. Several academic databases and industry sources were methodically searched to get a wide range of the pertinent literature that was published in 2018-2025. The study design focuses on narrative synthesis methodology with the help of thematic coding in order to combine the results of various study designs, such as empirical studies, case studies, and industry reports. In this way, it is possible to identify the major themes, trends, and gaps in the existing knowledge base. A critical assessment of the ethical, governance, and organizational issues related to the implementation of GenAI in enterprises is also included in the design.

Search Strategy

The search strategy of this systematic review was carefully developed in order to ensure that it can cover a comprehensive and relevant literature on the use of generative artificial intelligence (GenAI) applications in enterprise information systems (EIS) in the United States. Several academic databases, such as Scopus, Web of Science, IEEE Xplore, and PubMed (in particular, healthcare-related enterprise systems), were searched in a systematic manner to provide coverage over a wide range of disciplines. Besides this, white papers and reports in the industry were also adopted to bring practical inputs and future trends in the business world.

Criteria of Inclusion and Exclusion***Inclusion Criteria***

- Studies published between 2018-2025.
- Target the business in the United States.
- Case studies, industry reports, systematic reviews and empirical studies.

Exclusion Criteria

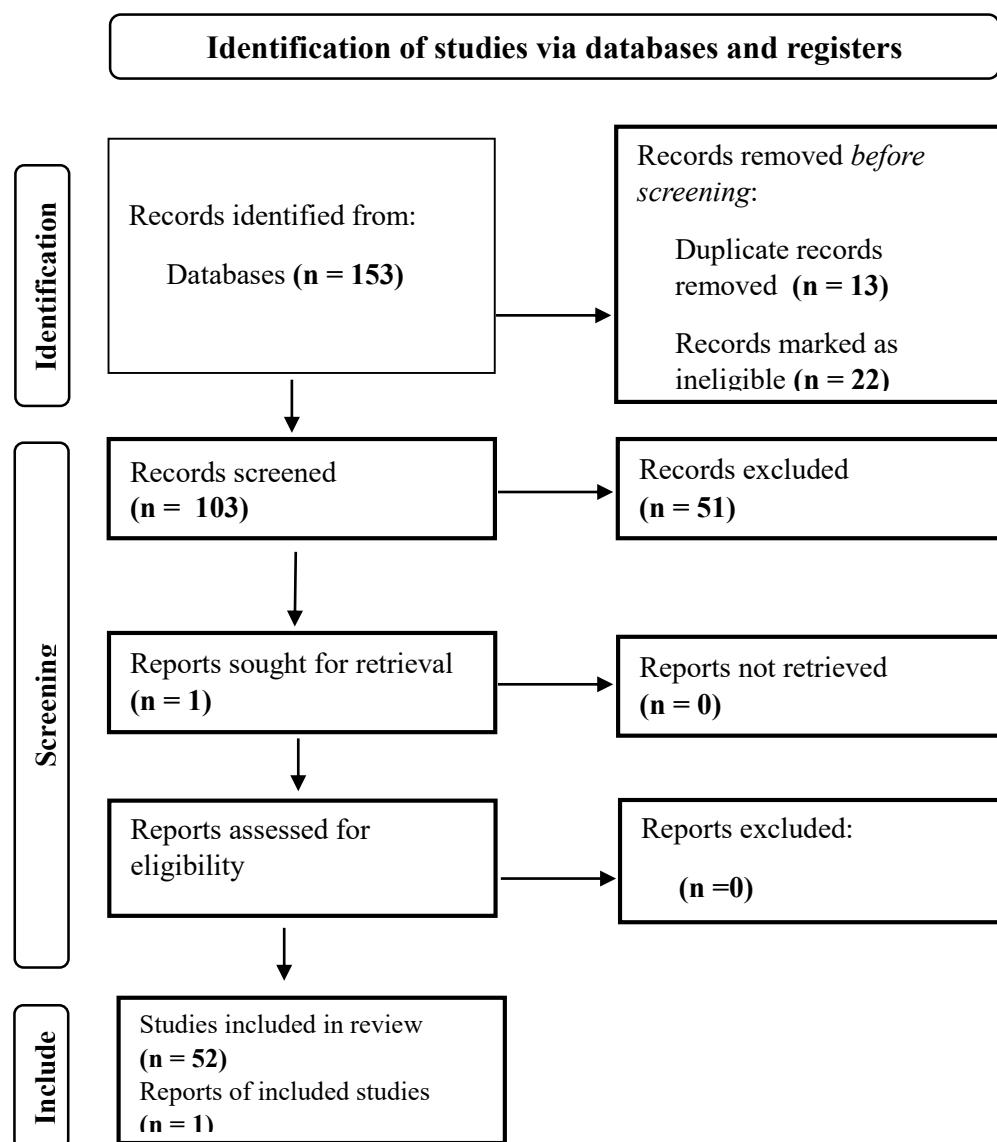
- Non-English publications.
- International research out of USA.
- Unprovable or unsystematic opinion articles.

Keywords

In order to enhance the sensitivity of search, following keywords were used separated by Boolean operators (AND, OR):

"Generative AI" OR "Generative Artificial Intelligence" OR "GenAI" AND "Enterprise Information Systems" OR "EIS" AND "Business Intelligence" OR "BI" AND "Decision Support" OR "Strategic Decision Support" AND "United States" OR "U.S." AND "Ethics" OR "Governance" OR "Data Security" OR "Organizational Readiness".

Ethical Considerations


This systematic review places a lot of ethical deliberation; especially, considering the sensitivity of the use of generative AI applications in enterprise information systems. The review procedure was conducted in accordance with the established ethical standards to be as well as to maintain integrity, transparency and respect to intellectual property. Effort was made to incorporate those studies that demonstrated responsible AI practices, including fairness, accountability, and transparency in the implementation of generative AI. The ethical issues linked to the implementation of GenAI, such as the possibility of the AI models being biased, data privacy, and the impact of automated decisions on the dynamics of workforce, were critically evaluated during the review. The focus was on the governance structures and regulatory adherence to avoid abuse and unintentional effects.

Data Management

The systematic review data management was done with care in order to make the information accurate, consistent and transparent in the whole research process. Reference management software was used to catalog all the retrieved studies and reports so that they could be arranged to provide easy access to bibliographic data and easy screening and retrieval. Data extraction templates were created to normalize the gathering of important variables, such as the characteristics of the study, the uses of AI, the outcomes, and limitation. To reduce the error and bias, quality control were implemented such as having two or more reviewers do a second check on the data that had been extracted. Any differences were adjusted to consensus discussions. Data were extracted and stored safely along with a data backup against loss and unauthorized access following the best practices of data governance.

Results

A total of 153 research studies and one research report was identified, all of them were based on the studies regarding generative artificial intelligence in enterprise information systems in transforming business intelligence and strategic decision support processes, in United states. Out of these studies, 13 were removed because of duplication of records, references and location and 22 studies were marked as ineligible, as not relevant concepts. Then 15 for some other unavoidable conditions. Further 103 records were saved for screening, then in the screening process 51 records were further removed on the basis of exclusion criteria stated above. Total studies finalized for review were 52. One report was included in the study.

Source: Page MJ, et al. BMJ 2021;372:n71. doi: 10.1136/bmj.n71 <https://creativecommons.org/licenses/by/4.0/>

Figure 1: Synthesis of Studies collected as per PRISMA, 2020 Guidelines

The existing literature on the application of generative artificial intelligence (GenAI) to enterprise information systems (EIS) indicates a swift rise in the use of applications within various industries, [4], [15], [16] which show the substantial influence on business intelligence (BI) and strategic decision support. Studies emphasize that GenAI technologies include large language models, generative design algorithms and are becoming increasingly involved in EIS to automatize data analysis, improve predictive functionality, and create actionable insights. [16], [17] Research in the financial sector indicates the level of accuracy in fraud detection and automated reporting efficiency, which has helped in the risk management and operational processes. [18], [19] GenAI-based clinical decision support systems can help healthcare businesses enhance the accuracy of diagnostics and management of patient care. The retail and e-commerce industries are using GenAI to provide tailored recommendations to their customers, predict demand and optimize their supply chain, leading to higher customer interaction and operational responsiveness. [20], [13]

Additionally, generative design and predictive maintenance which are automated by GenAI are used by manufacturing industries to speed up product innovation and lower downtime. In these domains, GenAI will improve BI by enabling the creation of data stories through the use of natural language, automatically generating reports, and scenario prediction. [12], [16] Nevertheless, research also finds difficulties, such as ethical issues argued regarding bias in AI frameworks, governance challenges that need effective regulation standards, readiness barriers in an organization (including skills deficits and resistance to change), and risks to data security of sensitive company data. In general, literature highlights the transformational potential of GenAI in enterprise settings with the issue that the implementation strategies require responsibility to handle these issues efficiently. [8], [9], [13]

Discussion

Financial Planning Generative AI

The financial operations is the brain of the enterprise information systems, and the transformation of it with the help of the generative artificial intelligence is specifically significant. [3] By 2025, most organizations in the US have ceased to have a financial-focused form of planning and moved towards the concept of connected business planning where other departments such as HR and marketing strategize with finance using the same AI tools. [12], [13] This integration can be used to construct three-statement models (P&L, balance sheet, and cash flow) automatically and speed-up financial close cycles due to real-time anomaly detection. [14] One of the main advantages in FP+A is that with the help of generative models, one can scale their simulations of the so-called what-if. The traditional tools were constrained by the assumptions that were manually constructed in spreadsheets, which in most cases, could not be used to model complex interdependencies. [15], [16] However, generative AI can identify thousands of combinations of variables at a time and generate baseline, optimistic, and pessimistic forecasts in minutes. In the case of a CFO, it is the capability to compare at any given time between slow growth and rapid recovery scenarios and view the transparent financial ramifications of each. [7]

ERP Optimization

Supply chain management (SCM) and Enterprise Resource Planning (ERP) systems are being affected by generative artificial intelligence, which is a transition to the so-called autonomous operations. [9], [11] This is the biggest challenge in SCM in the United States: fragmented data across several systems, where generated models make it easier to have a view of all the stages of the chain in real-time, starting with the sourcing of raw-materials and ending up in final delivery. [13], [7] Demand forecasting with a large language model also

is fine due to the fact that such models utilize the unstructured data, i.e. social media trends and weather forecasts, which are ignored by traditional sales-history models. In case of industries which have quick changes in trends, like electronic and fashion industries, this enables dynamic changes in inventory that decrease the surplus inventory and also reduces the shortages. [12], [15]

This accuracy has reduced food waste by a quarter in the food and beverage industry and boosted profitability by a dozen percent. Supplier relationship management is also simplified with the assistance of generative AI. [17], [18] It is now possible to have automated systems summarizing supplier responses to questionnaires, preparing supplier agreements with pre-programed clauses and even automated negotiations to get the best prices. The Joule agent of SAP, as an example, enables procurement experts to check the invoices of its suppliers and do mass updates directly in a natural language, making the work process more efficient by a factor of up to 25. [19], [20], [23]

Technical Architecture

The generative efficacy of artificial intelligence as an operational subsystem in enterprise information systems is conditional upon the underlying transformer architecture as well as the creation of specialised "agentic" layers. Transformers apply the self-attention mechanisms to the relevance of various data points in a prompt to enable the system to recognize long-range dependencies in the business documents. [17], [22] A reduced perplexity implies that the model is more confident in its predictions and this is important in reduction of hallucinations in high stakes financial or legal reporting. Individual systems such as Gen-Optimizer obtained a perplexity of 20.17, which depicts the understanding of language better when applied in the business cost management situation. [23]. In addition to text generation, the AI of the enterprise in 2025 uses Retrieval-Augmented Generation (RAG) to provide correct results. To tie generative models to an internal source of truth within an organization, RAG links the models to the ERP databases, policy documents, and transaction histories of an organization. [24], [26] This does not allow the model to be based on the sole training data, which could be too old or too generic and therefore must base its responses on specific and proven institutional data.

Conclusion

Introduction of generative artificial intelligence into business information systems is a paradigm shift in a more than deterministic computing to a more probable and reasoning based decision support that reinvents corporate intelligence. Organizations with high performance are experiencing productivity benefits up to 40 percent by implementing agentic capability within core processes in the United States, especially in financial planning and supply chain optimization. Yet, the achievement of this potential is now not facilitated by a 95% failure rate in enterprise AI implementation, which is mostly caused by bad data quality and absence of a controlled Business Data Fabric to base model output on trusted institutional knowledge. With the federal policy shifting toward a deregulatory paradigm in the form of the Executive Order 14179, organizations need to implement a culture of disciplined internal control inspired by the NIST AI RMF to work through a maze of legal obstacles and still ensure accuracy and transparency in the algorithms. The estimated trend of correlation to causal intelligence by 2030 will make generative AI not a differentiator but the backbone to strategic agility and autonomous operations throughout the American corporate realm.

Future Scope of Study

The future effectiveness of this research includes a number of opportunities to develop the knowledge and implementation of generative artificial intelligence (GenAI) in the enterprise information system (EIS). Since the genAI technologies are rapidly developing, further studies are to be conducted in the context of longitudinal analysis to determine the enduring influence of GenAI on the performance of enterprises, innovation, and competitive advantage. The implementation of GenAI in various industry sectors will be compared to gain further understanding of industry-specific issues and optimal practices of AI implementation. Furthermore, it is essential to create more customized ethical frameworks and governance frameworks to tackle the emerging issues on bias, transparency, accountability and data privacy in generative AI applications.

References

1. Wilson C, Wedel. 2025 Trends in Enterprise Planning: Organizations Moving From Aspiration to Action. *Board* [Internet]. 2024. Available from: <https://www.board.com/guide/2025-trends-in-enterprise-planning>
2. García-Peña FJ, Babl, Babl. Generative Artificial Intelligence (GAI) in Strategic Decision-Making: Accuracy and Efficiency Improvements. *MDPI Decisions*. 2025;15(2):66.
3. IT Path Solutions. Generative AI Impact on Industries: Global Investment Surges in 2024-2025. *IT Path Solutions* Blog [Internet]. 2025. Available from: <https://www.itpathsolutions.com/generative-ai-impact-on-industries>
4. Herzig P. SAP Business AI: Release Highlights Q3 2025 - Agentic Intelligence in Every Workflow. *SAP News* [Internet]. 2025 Oct 22. Available from: <https://news.sap.com/2025/10/sap-business-ai-release-highlights-q3-2025/>
5. García-Peña FJ, et al. Theoretical Foundations and Complexity of GAI in Business. *MDPI Decisions*. 2025;15(2):66.
6. Rezazadeh et al. GenAI in Entrepreneurship: A Systematic Review of Effects on Research and Practice. *ResearchGate* [Internet]. 2025. Available from: [https://www.researchgate.net/publication/391657574 GenAI in Entrepreneurship](https://www.researchgate.net/publication/391657574)
7. MDPI Computers. Gen-Optimizer: A Generative AI-Based Framework for Business Cost Management. *Computers*. 2025;14(2):59.
8. The CUBE Research. Salesforce's Road to AI Decision Intelligence: Foundations for System-2 Reasoning. *theCUBE* [Internet]. 2025 Oct 20. Available from: <https://thecuberesearch.com/the-hidden-gem-at-dreamforce-2025-salesforces-road-to-ai-decision-intelligence/>
9. McKinsey & Company. Superagency in the Workplace: Evolution of Context Windows and Reasoning. *McKinsey Technical Insights* [Internet]. 2025 Jan. Available from: <https://www.mckinsey.com/capabilities/tech-and-ai/our-insights/superagency-in-the-workplace-empowering-people-to-unlock-ais-full-potential-at-work>
10. Master of Code. 65 Powerful Generative AI Use Cases for Smarter Decisions and Risk Management. *Master of Code* Blog [Internet]. 2025. Available from: <https://masterofcode.com/blog/generative-ai-use-cases>
11. Shea BJ, Reeves BC, Wells G, Thuku M, Hamel C, Moran J, et al. AMSTAR 2: A critical appraisal tool for systematic reviews that include randomised or non-randomised studies of healthcare interventions, or both. *BMJ*. 2017;358:j4008.
12. The Joanna Briggs Institute. JBI's Critical Appraisal Checklist for Systematic Reviews and Research Syntheses. *JBI* [Internet]. 2024. Available from: <https://jbi.global/critical-appraisal-tools>
13. AMSTAR. AMSTAR-2 Critical Appraisal Tool Checklist for Methodological Quality. *Amstar Checklist* [Internet]. 2025. Available from: https://amstar.ca/Amstar_Checklist.php
14. Gartner. 2025 Hype Cycle for Artificial Intelligence: Organizations confronting the limits of GenAI. *Gartner Insights* [Internet]. 2025. Available from: <https://www.gartner.com/en/topics/generative-ai>
15. Gatlin J. Strategic Agility and Real-time Data Analytics in the Technology Industry. *F1000Research*. 2024;14:1238.

16. SAP News. Deep Research Capability in Joule: Connecting Internal Data and External Intelligence. SAP Connect [Internet]. 2025 Dec. Available from: <https://www.sap.com/topics/innovation-guide/h2>
17. Singla A, Sukharevsky A. The State of AI in 2025: Strategies of High Performers. McKinsey Global Survey [Internet]. 2025 Nov 05. Available from: <https://www.mckinsey.com/capabilities/quantumblack/our-insights/the-state-of-ai>
18. Zycus. GenAI Deployment within Fortune 500 Companies: Redefining Procurement Efficiency. Zycus Blog [Internet]. 2024. Available from: <https://www.zycus.com/blog/generative-ai/genai-deployment-within-fortune-500-companies>
19. Workday. How Generative AI is Reinventing Scenario Planning: Unifying Structured and Unstructured Inputs. Workday Blog [Internet]. 2025. Available from: <https://blog.workday.com/en-us/how-generative-ai-is-reinventing-scenario-planning.html>
20. Dilmegani C. Generative AI Finance Use Cases: Macroeconomic Simulations and Preparation for Black Swan Events. AI Multiple [Internet]. 2025 Sep 30. Available from: <https://research.aimultiple.com/generative-ai-finance/>
21. Procurable.AI. Large Language Models in Supply Chain Management: Potential Applications. Procurable.ai [Internet]. 2024 Jan 22. Available from: <https://procurable.ai/large-language-models-in-supply-chain-management/>
22. SupplyChainBrain. How Large Language Models are Transforming SCM: Real-time Demand Forecasting. SupplyChainBrain Think Tank [Internet]. 2025. Available from: <https://www.supplychainbrain.com/blogs/1-think-tank/post/41602-how-large-language-models-are-transforming-supply-chain-management>
23. SAP News. Role-Based AI Assistants in Joule: Orchestrating Category Management and Sourcing. SAP Innovation Guide [Internet]. 2025. Available from: <https://www.sap.com/topics/innovation-guide/h2>
24. SupplyChainBrain. Real-time GPS and Weather Data Integration for Logistics Optimization. SupplyChainBrain [Internet]. 2025. Available from: <https://www.supplychainbrain.com/blogs/1-think-tank/post/41602-how-large-language-models-are-transforming-supply-chain-management>
25. National Institutes of Health. The Potential Application of Large Language Models in Pharmaceutical Supply Chain Management. PMC [Internet]. 2024 Apr. Available from: <https://pmc.ncbi.nlm.nih.gov/articles/PMC11001215/>
26. Decision Inc. Navigating Your SAP Data Strategy in 2025: The Business Data Fabric Foundation. Decision Inc [Internet]. 2025. Available from: <https://decisioninc.com/navigating-your-sap-data-strategy-in-2025-practical-paths-and-key-decisions/>
27. A Conceptual Framework for Sustainable AI-ERP Integration in Dark Factories: Synthesising TOE, TAM, and IS Success Models for Autonomous Industrial Environments. [Internet]. 2025. Available from: https://openurl.ebsco.com/EPDB%3Agcd%3A8%3A1235864/detailv2?sid=ebsco%3Aplink%3Acrawler&id=ebsco%3Adoi%3A10.3390%2Fsu17209234&crl=f&link_origin=none
28. Artificial Intelligence-Driven Business Analytics for IT Strategy: Advancing Decision-Making, Real-Time Insights, and Organizational Agility Through Intelligent Automation and Data Integration. [Internet]. 2025. Available from: <https://www.ceeol.com/search/article-detail?id=1361321>