

ANALYSIS OF SUPPLEMENTARY FEEDING FOR CHILDREN UNDER FIVE AND ITS IMPACT ON GROWTH AND DEVELOPMENT

Louisa Nicolina Kandoli

Jurusan Pendidikan Kesejahteraan Keluarga
Fakultas Teknik, Universitas Negeri Manado, Indonesia.
louisa_kandoli@yahoo.com

Abstract: This study investigates the role of supplementary feeding in the growth and cognitive development of children under five, emphasizing its importance in the first years of life. A qualitative literature review was conducted to explore the relationship between supplementary feeding practices and child health outcomes, focusing on regional disparities and socio-economic barriers. Findings indicate that while high-income countries generally benefit from well-regulated supplementary feeding practices, low- and middle-income countries face significant challenges due to limited access to diverse, nutrient-rich foods. These challenges lead to malnutrition, stunting, and cognitive delays, which in turn affect long-term development and productivity. The study highlights the crucial role of micronutrients, such as iron, iodine, zinc, and vitamin A, in supporting cognitive function and overall growth. Socio-cultural factors, including traditional feeding practices and financial constraints, further complicate effective feeding strategies, especially in underserved regions. The paper recommends the implementation of culturally sensitive, context-specific educational programs to improve supplementary feeding practices and the strengthening of local food systems to ensure access to nutrient-dense foods. By addressing these gaps, this study suggests that global health policies can significantly enhance child development outcomes and break the cycle of poverty and malnutrition.

Keywords: supplementary feeding, child growth, cognitive development, malnutrition, micronutrients

INTRODUCTION:

Proper nutrition during early childhood is a fundamental determinant of a child's growth, development, and overall well-being. The first five years of a child's life represent a critical period for physical, cognitive, and emotional development. Adequate feeding, particularly supplementary feeding, plays an essential role in ensuring that children receive the necessary nutrients for their growth and the development of their immune system [1]. While breastfeeding remains the gold standard for infant nutrition in the first six months of life, supplementary feeding becomes increasingly important after this period to support the child's evolving nutritional needs [2]. Despite the recognition of this importance, the effectiveness and impact of supplementary feeding strategies on children's growth and development remain underexplored in many low- and middle-income countries (LMICs).

In many regions, particularly in rural and underserved communities, children face significant challenges in accessing appropriate nutrition. These challenges include limited knowledge about appropriate complementary foods, poor infrastructure, and socio-economic constraints that make it difficult for families to afford or prepare nutrient-dense foods [3]. As a result, children often experience malnutrition, which can manifest as stunting, underweight, or wasting. These conditions are not only immediate health concerns but also have long-lasting effects on cognitive development, school performance, and productivity in adulthood. The World Health Organization (WHO) and other international bodies have made substantial recommendations on the types and timings of supplementary feeding; however, compliance and the implementation of these guidelines have not been consistently achieved [4].

The problem of inadequate supplementary feeding persists in various parts of the world, contributing to high rates of malnutrition among children under five. Despite ongoing interventions, there is a clear gap in understanding the broader implications of supplementary feeding practices and their precise impact on children's physical and cognitive development [5]. A major issue lies in the lack of standardized practices and culturally sensitive approaches that integrate local food systems with scientifically backed guidelines. Additionally, studies examining the multifaceted outcomes of supplementary feeding ranging from growth metrics to cognitive and emotional development are sparse and fragmented [6]. This has led to a need for more comprehensive studies that explore how different feeding practices contribute to overall child development across diverse cultural contexts.

While there has been a growing body of research on the benefits of supplementary feeding, much of the existing literature remains focused on clinical and nutritional outcomes, with little attention paid to the broader socio-environmental factors that influence feeding practices. Moreover, research tends to focus on specific regions or countries, leading to a limited understanding of how supplementary feeding can be optimized on a global scale. This highlights a critical research gap in the existing literature, namely the need for a more integrated approach that takes into account both the scientific and socio-cultural aspects of supplementary feeding. Addressing this gap could provide a more nuanced understanding of how feeding interventions can be improved to better support child development.

The novelty of this study lies in its attempt to bridge these gaps by providing an in-depth analysis of supplementary feeding practices and their impact on the holistic development of children under five. This study aims to not only examine the nutritional effects of supplementary feeding but also to explore its broader implications for cognitive and emotional development. By focusing on a diverse sample from both urban and rural areas, the research will identify regional variations in feeding practices and their consequences on growth outcomes. This research will also contribute to the ongoing debate about the effectiveness of global feeding interventions and offer recommendations for improving local and international strategies.

The importance of this study is underscored by the increasing recognition of the long-term effects of early childhood nutrition on health outcomes throughout life. Addressing malnutrition and poor feeding practices in early childhood is not only critical for child survival and growth but also for breaking the cycle of poverty and fostering healthier, more productive generations. By providing evidence-based recommendations and a deeper understanding of supplementary feeding's role in child development, this study hopes to contribute valuable insights to the global conversation on improving child health outcomes.

LITERATURE REVIEW AND METHODOLOGY:

Literature Review

1. Importance of Supplementary Feeding in Early Childhood Development

Supplementary feeding is essential after the first six months of life, a period during which breast milk alone can no longer meet all the nutritional needs of growing children. The introduction of complementary foods is intended to provide the additional nutrients needed to support the development of a child's immune system, brain function, and physical growth [7]. Research has shown that children who receive adequate supplementary feeding are less likely to suffer from micronutrient deficiencies, which can lead to conditions such as anemia, stunting, and impaired cognitive development. Moreover, an appropriate introduction to supplementary feeding ensures that children receive a variety of nutrients, which are crucial for preventing developmental delays and promoting overall well-being [8].

Several global health organizations, including the World Health Organization (WHO), have developed guidelines on supplementary feeding that emphasize the introduction of energy-dense and nutrient-rich foods at six months of age. These guidelines also recommend the continuation of breastfeeding until at least two years of age, as breast milk remains a key source of essential nutrients [9]. Despite these recommendations, studies indicate that the actual practice of supplementary feeding is often inadequate, especially in resource-poor settings. In many cases, caregivers may not have access to the necessary food varieties or may lack the knowledge to prepare appropriate meals for their children. This disparity in supplementary feeding practices is a major contributing factor to the persistence of childhood malnutrition in many low- and middle-income countries (LMICs).

2. Socio-Economic Factors Affecting Supplementary Feeding Practices

Socio-economic factors play a significant role in determining the quality and quantity of supplementary feeding provided to children. Families with limited financial resources may struggle to afford the diverse and nutrient-rich foods necessary for a balanced diet, leading to suboptimal feeding practices [10]. Furthermore, households in rural areas or informal urban settlements often lack the infrastructure to store and prepare foods properly, which compounds the issue. These challenges are exacerbated by low levels of education, where caregivers may not have the knowledge or skills to prepare foods that meet the nutritional needs of their children [11]. A lack of awareness regarding the importance of supplementary feeding often results in children being fed inadequate or inappropriate foods, such as starchy porridges with little nutritional value.

In addition to economic constraints, cultural beliefs and practices also influence supplementary feeding choices. In some regions, there is a strong preference for certain types of foods or feeding methods that may not align with nutritional guidelines. For example, some caregivers may delay the introduction of complementary foods or provide single-food diets based on cultural traditions, even if they do not meet the recommended nutritional standards [12]. These socio-cultural factors are often overlooked in global nutritional interventions, yet they play a crucial role in shaping the dietary habits and feeding practices of children. Research has highlighted the need for context-specific, culturally sensitive interventions that address both socio-economic and cultural barriers to effective supplementary feeding.

3. Impact of Supplementary Feeding on Child Growth and Cognitive Development

The impact of supplementary feeding on physical growth has been widely documented, with studies showing that children who receive appropriate supplementary foods tend to have better growth outcomes, including higher weight-for-age and height-for-age indices. Malnutrition in early childhood is associated with stunted growth, which in turn affects the child's ability to learn and thrive in school [13]. Longitudinal studies have demonstrated that stunting during the first two years of life has lasting effects on educational attainment and productivity in adulthood. Nutritional interventions, including supplementary feeding, are critical for preventing these long-term negative outcomes by ensuring that children reach their full potential in terms of both physical health and cognitive abilities [14].

Beyond physical growth, supplementary feeding also plays an important role in cognitive development. Adequate nutrition during the first few years of life supports brain development, including neural connections, memory, and learning capacity. Research has shown that children who receive proper nutrition are more likely to perform better in school, have higher IQs, and develop social and emotional skills more effectively [15]. Nutrient deficiencies, on the other hand, particularly in essential micronutrients like iron, iodine, and zinc, have been linked to delays in cognitive function and behavioral problems. This underscores the importance of not only meeting the caloric needs of children but also ensuring that their micronutrient needs are met through appropriate supplementary feeding.

Methodology

This study uses a qualitative literature review approach to examine existing research on supplementary feeding for children under five and its impact on growth and development. The review synthesizes findings from various sources to identify patterns, gaps, and inconsistencies in the literature.

Data Collection

Data was collected through a systematic search of academic databases, including PubMed, Scopus, and Google Scholar, using keywords such as "supplementary feeding," "child growth," and "complementary feeding." The search was limited to studies published between 2020 and 2025, with a focus on peer-reviewed journal articles and grey literature from reputable organizations. A total of 50 studies were initially identified, with 30 selected for full-text review, ultimately resulting in 25 studies meeting the inclusion criteria.

Table 1. PRISMA Flow Diagram for Study Selection

Stage	Number of Studies
Identification	50
Screening	30
Eligibility	25
Included	25

Criteria for Inclusion and Exclusion

Studies were included if they: (1) focused on children under five, (2) examined supplementary feeding's impact on growth and development, (3) were published in English, and (4) were peer-reviewed. Studies were excluded if they: (1) did not focus on supplementary feeding or (2) were not relevant to the age group or outcomes under consideration.

Data Analysis

Thematic synthesis was used for data analysis, where key themes were identified by coding findings across the selected studies. These themes included types of supplementary foods, socio-economic barriers, and the effects on growth and cognitive development. The analysis allowed for the identification of common trends, gaps, and recommendations for future research and interventions.

RESULTS AND THEIR ANALYSIS

1. Supplementary Feeding Practices Across Different Regions

The analysis of the selected studies revealed that supplementary feeding practices vary significantly across different regions, influenced by socio-economic conditions, cultural preferences, and local food availability. In high-income countries, supplementary feeding is often guided by well-established dietary guidelines and healthcare infrastructure, leading to relatively consistent practices [16]. For instance, in many European countries, parents follow specific guidelines on introducing solid foods, with a focus on a variety of fruits, vegetables, and proteins. The studies from these regions generally report positive outcomes, including improved growth metrics and cognitive development when complementary feeding is introduced at the appropriate age with adequate nutrient diversity.

Studies from low- and middle-income countries (LMICs) reveal more variability in supplementary feeding practices. A recurring theme in these studies is the lack of access to diverse and nutrient-dense foods due to financial constraints and limited availability. For example, in many rural areas, caregivers rely on inexpensive staple foods such as rice, maize, or porridge, which are often low in essential micronutrients [17]. As a result, children in these areas are at greater risk of nutritional deficiencies, which can lead to stunted growth, underweight, and developmental delays. Furthermore, caregivers in these regions may lack knowledge about the importance of variety in complementary foods, leading to insufficient feeding practices.

The findings suggest that supplementary feeding practices are often shaped by local food systems and the socio-economic context. While there is a general trend of inadequate feeding in resource-poor settings, the introduction of community-based education programs that promote diverse and affordable feeding practices has shown positive results. Studies that focus on interventions targeting caregiver education and the provision of locally available nutrient-rich foods report improvements in children's growth and development, highlighting the importance of context-specific interventions [18].

2. Impact on Physical Growth: Stunting and Underweight

One of the most significant findings from the review was the strong association between inadequate supplementary feeding and the prevalence of stunting and underweight in children under five. Numerous studies documented that children who received insufficient or improper supplementary feeding were more likely to experience growth faltering, particularly in terms of height-for-age and weight-for-age indices [19]. In LMICs, the incidence of stunting, a key indicator of chronic malnutrition, remains alarmingly high, with inadequate complementary feeding being a major contributing factor.

In these regions, a lack of diversity in complementary foods, such as an over-reliance on carbohydrates with low protein and fat content, contributes significantly to stunting. Furthermore, limited access to micronutrient-rich foods such as fruits, vegetables, and animal products exacerbates the problem. The review highlighted several studies that showed the positive impact of introducing a variety of nutrient-dense foods on reducing stunting rates [20]. For example, studies from sub-Saharan Africa and Southeast Asia demonstrated that children who received supplementary feeding that included vegetables, legumes, and animal-source foods showed better growth outcomes, including a reduction in stunting rates.

On the other hand, the studies from high-income countries indicate that when supplementary feeding is properly managed, with emphasis on age-appropriate portions and a balanced nutrient intake, children generally experience favorable growth outcomes [21]. However, some studies pointed to a rise in childhood obesity as a result of overfeeding or consumption of high-calorie, low-nutrient foods. This suggests that while growth outcomes in high-income regions may be more favorable overall, challenges such as childhood obesity due to poor dietary choices also need to be addressed.

3. Cognitive Development and Long-Term Impact

Supplementary feeding not only affects physical growth but also has a profound impact on cognitive development. Studies consistently reported that children who received appropriate complementary feeding, especially those with adequate levels of essential micronutrients, performed better on cognitive development assessments [22]. Nutrients such as iron, iodine, zinc, and vitamin A play crucial roles in brain development, and deficiencies in these nutrients are strongly associated with developmental delays, lower IQ scores, and learning difficulties.

In several studies, it was noted that children in high-income countries, where supplementary feeding practices are generally well-regulated, showed enhanced cognitive function and better school performance later in life. These children typically receive a diverse range of foods that ensure their micronutrient requirements are met [23]. In contrast, children from lower-income regions who experienced nutritional deficiencies due to poor complementary feeding exhibited poorer cognitive outcomes, as evidenced by lower test scores, developmental delays, and difficulties in motor skills.

The long-term implications of inadequate supplementary feeding extend beyond early childhood. Several longitudinal studies demonstrated that early nutritional interventions could help mitigate the negative effects of poor feeding practices on cognitive development. For example, children who received targeted nutritional interventions during the complementary feeding period were shown to have better cognitive outcomes in their school years, even if they experienced early nutritional deficiencies. This highlights the potential for early nutritional interventions to have lasting effects on academic performance and overall quality of life.



Figure 1. Nutrient Impact on Cognitive Development

The figure above illustrates the essential role of key micronutrients iron, iodine, zinc, and vitamin A in supporting cognitive development. It also highlights the negative consequences of deficiencies in these nutrients, including delayed learning, poor cognitive abilities, focus issues, and stunted growth. Proper nutrition during the critical years of childhood can significantly enhance brain function and reduce the risk of developmental delays.

4. Socio-Economic and Cultural Barriers to Effective Supplementary Feeding

Another critical finding from the review was the identification of socio-economic and cultural barriers that prevent the successful implementation of supplementary feeding practices. Studies from both high-income and low-income countries indicated that despite the availability of nutritional guidelines and information, the effective implementation of these recommendations is often hindered by economic constraints, cultural beliefs, and limited access to necessary resources.

[24]. In LMICs, many families cannot afford the recommended nutrient-dense foods, and local markets may lack sufficient variety to support the introduction of diverse complementary foods.

Cultural beliefs and traditional feeding practices also play a significant role in shaping how supplementary feeding is carried out. In many cultures, certain foods are believed to be unsuitable for young children, leading to restricted diets [17]. Additionally, in some regions, there is a preference for feeding children with specific food groups or textures that may not provide adequate nutrition. These cultural norms often conflict with international guidelines, creating barriers to the successful adoption of recommended feeding practices.

The review also highlighted the effectiveness of community-based interventions aimed at overcoming these barriers. Programs that combine nutritional education with practical guidance on preparing affordable, locally available, and culturally acceptable complementary foods were found to be particularly successful [25]. These programs often include training caregivers on food preparation, the importance of a balanced diet, and the use of local ingredients to meet the nutritional needs of children. Such community-driven interventions have shown promise in improving supplementary feeding practices and, subsequently, child health outcomes.

CONCLUSION

This study underscores the critical role of supplementary feeding in the growth and cognitive development of children under five. The literature review highlights that while supplementary feeding is essential for meeting the nutritional needs of children beyond the first six months of life, there are significant regional disparities in feeding practices. In high-income countries, standardized and well-regulated feeding practices have led to positive outcomes in child growth and cognitive development. However, in low- and middle-income countries, where access to diverse, nutrient-rich foods is often limited, children are at a higher risk of malnutrition and developmental delays. The study also revealed that socio-economic and cultural barriers are key factors that influence the effectiveness of supplementary feeding interventions, making it imperative to address these issues in global health strategies.

The implications of these findings are far-reaching, as early childhood nutrition has long-term effects on not only physical growth but also cognitive performance and emotional well-being. Malnutrition in early childhood can impair brain development, leading to delayed learning, poor cognitive skills, and stunted growth, which may result in adverse outcomes throughout life, including lower educational attainment and reduced productivity in adulthood. Therefore, addressing nutritional deficiencies and improving supplementary feeding practices is crucial for breaking the cycle of poverty and promoting healthier, more productive societies. The study emphasizes the need for more comprehensive, context-specific interventions that consider the socio-economic and cultural factors affecting feeding practices.

Policy recommendations based on these findings include the development of targeted nutritional education programs for caregivers, particularly in resource-poor settings, that focus on affordable and locally available nutrient-dense foods. Governments and international organizations should also prioritize the strengthening of food systems to ensure better access to diverse, healthy foods. Additionally, policies should encourage community-driven initiatives that engage local populations in the design and implementation of supplementary feeding programs, ensuring cultural relevance and sustainability. By addressing these gaps, global health policies can significantly improve the nutritional outcomes and overall development of children, particularly in underserved regions.

Reference

- [1] A. N. Nasution *et al.*, "Cumulative Effects of Supplemental Feeding Over Three Months on Toddler Growth: A Regression Analysis Perspective," *J. Poverty*, pp. 1–16, 2024.
- [2] N. M. Derseh, D. A. Shewaye, M. C. Agimas, M. A. Alemayehu, and F. M. Aragaw, "Spatial variation and determinants of inappropriate complementary feeding practice and its effect on the undernutrition of infants and young children aged 6 to 23 months in Ethiopia by using the Ethiopian Mini-demographic and health survey, 2019: spatial and multilevel analysis," *Front. Public Heal.*, vol. 11, p. 1158397, 2023.
- [3] O. B. Samosir, D. S. Radjiman, and F. Aninditya, "Food consumption diversity and nutritional status among children aged 6–23 months in Indonesia: The analysis of the results of the 2018 Basic Health Research," *PLoS One*, vol. 18, no. 3, p. e0281426, 2023.
- [4] M. C. Verga *et al.*, "Timing of complementary feeding, growth, and risk of non-communicable diseases: systematic review and meta-analysis," *Nutrients*, vol. 14, no. 3, p. 702, 2022.
- [5] T. Dearlove, A. Begley, J. A. Scott, and G. Devenish-Coleman, "Digital marketing of commercial complementary foods in australia: An analysis of brand messaging," *Int. J. Environ. Res. Public Health*, vol. 18, no. 15, p. 7934, 2021.
- [6] M. T. Gebretsadik, D. Tamiru, A. L. Sisay, and T. Belachew, "Effect of behavioural change communication through women development army on optimal complementary feeding practice among children aged 6–23 months in Southwest Ethiopia: a cluster randomized controlled trial," *Nutr. J.*, vol. 24, no. 1, p. 116, 2025.
- [7] N. Arslan, M. Kurtuncu, and P. M. Turhan, "The effect of baby-led weaning and traditional complementary feeding trainings on baby development," *J. Pediatr. Nurs.*, vol. 73, pp. 196–203, 2023.
- [8] M. Bergamini *et al.*, "Complementary feeding caregivers' practices and growth, risk of overweight/obesity, and other non-communicable diseases: a systematic review and meta-analysis," *Nutrients*, vol. 14, no. 13, p. 2646, 2022.
- [9] I. Csoelle *et al.*, "Health outcomes associated with micronutrient-fortified complementary foods in infants and young children aged 6–23 months: A systematic review and meta-analysis," *Lancet Child Adolesc. Heal.*, vol. 6, no. 8, pp. 533–544, 2022.
- [10] H. Asare, A. Rosi, M. Faber, C. M. Smuts, and C. Ricci, "Animal-source foods as a suitable complementary food for improved physical growth in 6 to 24-month-old children in low- and middle-income countries: a systematic review and meta-analysis of randomised

- controlled trials," *Br. J. Nutr.*, vol. 128, no. 12, pp. 2453–2463, 2022.
- [11] E. Tam, E. C. Keats, F. Rind, J. K. Das, and Z. A. Bhutta, "Micronutrient supplementation and fortification interventions on health and development outcomes among children under-five in low-and middle-income countries: a systematic review and meta-analysis," *Nutrients*, vol. 12, no. 2, p. 289, 2020.
- [12] M. R. Nugroho, D. Yansyah, U. Rhedo, E. Armeidi, and F. H. Erawani, "The Efficiency of Providing Animal Protein from Fish as Supplementary Feeding for Toddlers with Stunting," *J. Ilm. Pengabdi. Masy. Bid. Kesehat.*, vol. 1, no. 2, pp. 66–72, 2023.
- [13] J. J. H. Park *et al.*, "Interventions to improve linear growth during complementary feeding period for children aged 6–24 months living in low-and middle-income countries: a systematic review and network meta-analysis," *Gates open Res.*, vol. 3, p. 1660, 2020.
- [14] Z. Zhang *et al.*, "Effect of oral nutritional supplementation on growth in children with undernutrition: a systematic review and meta-analysis," *Nutrients*, vol. 13, no. 9, p. 3036, 2021.
- [15] M. F. Olsen *et al.*, "Impact of food supplements on early child development in children with moderate acute malnutrition: A randomised 2 x 2 x 3 factorial trial in Burkina Faso," *PLoS Med.*, vol. 17, no. 12, p. e1003442, 2020.
- [16] R. Suminar, S. Fatimah, and F. Karim, "The culture of complementary feeding practice among stunting in toddlers aged under 24 months," *Interdiscip. Int. J. Conserv. Cult.*, vol. 2, no. 1, pp. 21–30, 2024.
- [17] A. D. Abate, S. L. Hassen, and M. M. Temesgen, "Timely initiation of complementary feeding practices and associated factors among children aged 6–23 months in Dessie Zuria District, Northeast Ethiopia: a community-based cross-sectional study," *Front. Pediatr.*, vol. 11, p. 1062251, 2023.
- [18] J. Saleem, R. Zakar, G. M. J. Bukhari, M. Naz, F. Mushtaq, and F. Fischer, "Effectiveness of ready-to-use therapeutic food in improving the developmental potential and weight of children aged under five with severe acute malnourishment in Pakistan: a pretest-posttest study," *Int. J. Environ. Res. Public Health*, vol. 18, no. 17, p. 9060, 2021.
- [19] S. S. Anton, A. Bukhari, A. J. A. Baso, and K. A. Erika, "Effect of Rebon Shrimp-Based Supplementary Feeding on Height of Stunted Children," in *J Int Conf Proc*, 2022, pp. 236–241.
- [20] Z. A. Padhani *et al.*, "Optimal timing of introduction of complementary feeding: a systematic review and meta-analysis," *Nutr. Rev.*, vol. 81, no. 12, pp. 1501–1524, 2023.
- [21] Q. Rachmah, J. Astina, D. R. Atmaka, and L. Khairani, "The effect of educational intervention based on theory of planned behavior approach on complementary feeding: A randomized controlled trial," *Int. J. Pediatr.*, vol. 2023, no. 1, p. 1086919, 2023.
- [22] P. Kamudoni *et al.*, "Identifying and understanding barriers to optimal complementary feeding in Kenya," *Matern. Child Nutr.*, vol. 20, p. e13617, 2024.
- [23] Z. S. Lassi, F. Rind, O. Irfan, R. Hadi, J. K. Das, and Z. A. Bhutta, "Impact of infant and young child feeding (IYCF) nutrition interventions on breastfeeding practices, growth and mortality in low-and middle-income countries: systematic review," *Nutrients*, vol. 12, no. 3, p. 722, 2020.

- [24] D. Ghodsi, N. Omidvar, B. Nikooyeh, R. Roustaei, E. Shakibazadeh, and A. Al-Jawaldeh, “Effectiveness of community nutrition-specific interventions on improving malnutrition of children under 5 years of age in the eastern mediterranean region: A systematic review and meta-analysis,” *Int. J. Environ. Res. Public Health*, vol. 18, no. 15, p. 7844, 2021.
- [25] I. Mostafa *et al.*, “A microbiota-directed complementary food intervention in 12–18-month-old Bangladeshi children improves linear growth,” *EBioMedicine*, vol. 104, 2024.